
Introduction
The memory protection unit (MPU) in the Cortex®-M7 processor allows the modification of the Level 1 (L1) cache attributes by
region. The cache control is done globally by the cache control register, but the MPU can specify the cache mode and whether
the access to the region can be cached or not.

In some cases, the cached systems need to ensure data coherency between the core and the main memory when dealing with
shared data.

This application note describes the level 1 cache behavior and gives an example showing how to ensure data coherency in the
STM32F7 Series and STM32H7 Series when using the L1-cache.

For more details about the MPU and how to set the memory attributes according to the memory type and the cache policy, the
user can refer to the following documents available on http://www.st.com:
• STM32F7 Series and STM32H7 Series Cortex®-M7 processor programming manual (PM0253).
• Managing memory protection unit (MPU) in STM32 MCUs (AN4838).

Level 1 cache on STM32F7 Series and STM32H7 Series

AN4839

Application note

AN4839 - Rev 2 - March 2018
For further information contact your local STMicroelectronics sales office.

www.st.comGet more Datasheets at IQ.DIRECT

http://www.st.com
https://iq.direct/datasheets/

1 General information

This document applies to Arm®-based devices.

AN4839
General information

AN4839 - Rev 2 page 2/13Get more Datasheets at IQ.DIRECT

https://iq.direct/datasheets/

2 Cache control

The STM32F7 Series and STM32H7 Series devices include up to 16 Kbytes of L1-cache both for the instructions
and the data. An L1-cache stores a set of data or instructions near the CPU, so the CPU does not have to keep
fetching the same data that is repeatedly used, such as a small loop.
Figure 1. STM32F7 Series system architecture illustrates an example of the system architecture in the STM32F7
Series.

Figure 1. STM32F7 Series system architecture

8-
La

ye
r 3

2-
bi

t m
ul

ti-
AH

B
Bu

sM
at

rix

 1x
 A

XI
 L

ay
er

 to
3x

-3
2-

bi
t A

HB
 &

1x

-6
4b

it
AH

B

USB
HS

DMA L1-cache

LCD
TFT
DMA

(2)

Chrom-
ART

(2)

SRAM1

SRAM2

FMC

ITCM RAM

DTCM RAM

AHBSDT
CM

APB1
Peripheral

APB2
Peripheral

FLASH

AH
BP

DM
A_

M
EM

1

DM
A_

M
EM

2

DM
A_

P1

DM
A_

P2

ART

12
 B

us
 M

as
te

r

64
-B

it
Bu

sM
at

rix

32-bit Bus Matrix

Cortex-M7

IT
CM

GP
DMA2

GP
DMA1

ETH
DMA

(2)

64-bit bus

32-bit bus

AXIM

AHB1
Peripheral

AHB2
Peripheral

Quad-SPI

CPU AXI bus

CPU DTCM bus

CPU ITCM bus

CPU AHBP bus

CPU AHBS bus

Interbridge/
interbus bus

AHB bus

Bus multiplexer

Master

Slave

AXI to Multi -
AHB

AXI/AHB
bridge

(wide wire)

Since the memory accesses to the subsystem can take multiple cycles (especially on the external memory
interfaces with multiple wait states), the caches are intended to speed up the read/write operation to the memory.
The idea is that both operations can be optimized if the data are available locally (in an area that only takes one
cycle to access). The bus accesses to the subsystem memory, that take more than one CPU cycle to execute, are
differed from the CPU pipeline instruction stream execution. This allows a big performance boost. A cache is
normally implemented using sets of lines where a line is just a short segment of memory. The number of lines in a
set is called x-way associative. This property is set in the hardware design.
A read pulls the location from the memory only the first time that the location is accessed. A write either pushes
the value through the memory (write-through mode) or just places it in the cache for a later write (write-back
mode). Each mode has pros and cons in regard to the performance that must be weighed in accordance with the
application.
If the memory is write-back, the cache line is marked as dirty, and the write is only performed on the AXIM
interface when the line is evicted. When a dirty cache line is evicted, the data are passed to the write buffer in the
AXIM interface to be written to the external memory system.

AN4839
Cache control

AN4839 - Rev 2 page 3/13Get more Datasheets at IQ.DIRECT

https://iq.direct/datasheets/

The L1-caches on all Cortex®-M7s are divided into lines of 32 bytes. Each line is tagged with an address. The
data cache is 4-way set associative (four lines per set) and the instruction cache is 2-way set associative. This is
a hardware compromise to keep from having to tag each line with an address.
A cache hit is when an address falls anywhere within a given set of lines. So the hardware has to do fewer
address compares to find out if that address is cached. If there is a hit, the cache value is used for a read, or the
value is stored for a write. If there is a miss, a new line is allocated and tagged, and the cache is filled in from
either read or write accesses. If all the lines are allocated, the cache controller runs the line eviction process,
where a line is selected (depending on replacement algorithm) cleaned/invalidated, and reallocated. The data
cache and Instruction cache implement a pseudo-random replacement algorithm.
The L1-cache can be a performance booster when used in conjunction with memory interfaces on AXI bus. This
must not be confused with memories on the Tightly Couple Memory (TCM) interface, which are not cacheable.
Any normal memory area can be cacheable, as described above, but the biggest gains are seen on memories
accessed by the AXI bus such as the internal Flash memory, internal SRAMs and external memories attached to
the FMC or Quad-SPI controllers.
There are four basic cache operations: enable, disable, clean, and invalidate. Dedicated APIs are available in the
STM32F7 and STM32H7 Cube firmware packages for these operations, reducing the development time.

2.1 Accessing the Cortex®-M7 cache maintenance operations using CMSIS
The CMSIS cache functions defined in core_cm7.h are illustrated in Table 1. CMSIS cache functions.

Table 1. CMSIS cache functions

CMSIS function Description

void SCB_EnableICache (void) Invalidate and then enable the instruction cache

void SCB_DisableICache (void) Disable the instruction cache and invalidate its contents

void SCB_InvalidateICache (void) Invalidate the instruction cache

void SCB_EnableDCache (void) Invalidate and then enable the data cache

void SCB_DisableDCache (void) Disable the data cache and then clean and invalidate its contents

void SCB_InvalidateDCache (void) Invalidate the data cache

void SCB_CleanDCache (void) Clean the data cache

void SCB_CleanInvalidateDCache (void) Clean and invalidate the data cache

• Cache clean: the operation writes back dirty cache lines to the memory (an operation sometimes called a
flush).

• Invalidate cache: the operation marks the contents as invalid (basically, a delete operation).

AN4839
Accessing the Cortex®-M7 cache maintenance operations using CMSIS

AN4839 - Rev 2 page 4/13Get more Datasheets at IQ.DIRECT

https://iq.direct/datasheets/

3 Cache operation

Using the cache is simple at the most basic level. The user needs just to set up the region in the MPU and enable
the cache via the CMSIS function listed above. For example the user can set up things using either write-back or
write-through.
• Write-back: the cache does not write the cache contents to the memory until a clean operation is done.
• Write-through: triggers a write to the memory as soon as the contents on the cache line are written to. This

is safer for the data coherency, but it requires more bus accesses. In practice, the write to the memory is
done in the background and has a little effect unless the same cache set is being accessed repeatedly and
very quickly. It is always a tradeoff.

3.1 STM32F7 and STM32H7 default settings
By default, the MPU is disabled. In this case, the cache setting is defined as a default address map.

Table 2. Memory region shareability and cache policies

Address range Memory region Memory type Shareability Cache policy

0x00000000-0x1FFFFFFF Code Normal Non-shareable WT

0x20000000-0x3FFFFFFF SRAM Normal Non-shareable WBWA

0x40000000-0x5FFFFFFF Peripheral Device Non-shareable -

0x60000000-0x7FFFFFFF
External RAM Normal Non-shareable

WBWA

0x80000000-0x9FFFFFFF WT

0xA0000000-0xBFFFFFFF
External Device Device

Shareable
-

0xC0000000-0xDFFFFFFF Non-shareable

0xE0000000-0xE00FFFFF Private peripheral bus Strongly-ordered Non-shareable -

0xE0100000-0xFFFFFFFF Vendor-specific system Device Non-shareable -

3.2 Example for cache maintenance and data coherency
The purpose of this example is to get familiarized with the ARM® Cortex®-M7 data cache coherency.
At first the CPU copies 128-byte constant pattern from the Flash memory “aSRC_Const_Buffer” to the SRAM1
temporary buffer “pBuffer”
Then the CPU configures and enables the DMA to perform a memory-to-memory transfer to copy from the
SRAM1 “pBuffer” to the destination buffer “aDST_Buffer” defined in DTCM RAM.
Finally the CPU compares the data read by DMA aDST_Buffer with a constant pattern from the Flash memory
(aSRC_Const_Buffer).
Figure 2. Data transfer paths illustrates the data transfer paths.

AN4839
Cache operation

AN4839 - Rev 2 page 5/13Get more Datasheets at IQ.DIRECT

https://iq.direct/datasheets/

Figure 2. Data transfer paths

SRAM1

SRAM1_Buffer

Cortex-M7

L1 data cache

DMA controller

DMA Stream_x

AHB-BM

DTCM

aDST_Buffer

aSRC_Const_
Buffer

Flash

AXI-to-AHB

AHB-S

Copy data from
Flash to SRAM
using CPU

Copy data from
SRAM to DTCM
using DMA

From Flash to SRAM using CPU

From SRAM to DTCM using DMA

The purpose is to show the impact on data coherency between the CPU and DMA when accessing a cacheable
memory region with the write-back attribute set.
By default after reset, the data and instruction cache are disabled. When the data cache is disabled the data
transfer between SRAM1 and DTCM RAM is done successfully in the described scenario above.
When enabling the data cache before running the described transfer scenario, a data mismatch is detected
between the data in “aDST_Buffer” (DMA destination buffer in DTCM) and “aSRC_Const_Buffer” (CPU data
source buffer in the Flash memory).
When using the L1-cache there is always an ongoing problem, sometimes called cache coherency. This matter
crops up when multiple masters (CPU, DMAs...) share the memory. If the CPU writes something to an area that
has a write-back cache attribute (example SRAM1), the write result is not seen on the SRAM as the access is
buffered, and then if the DMA reads the same memory area to perform a data transfer, the values read do not
match the intended data.
• Solution 1: to perform a cache maintenance operation after writing data to a cacheable memory region, by

forcing a D-cache clean operation by software through CMSIS function SCB_CleanDCache() (all the dirty
lines are write-back to SRAM1).

• Solution 2: in order to ensure the cache coherency, the user must modify the MPU attribute of the SRAM1
from write-back (default) to write-through policy.

• Solution 3: to modify the MPU attribute of the SRAM1 by using a shared attribute. This prevents by default
the SRAM1 from being cached in D-cache.

• Solution 4: to perform a cache maintenance operation, by forcing write-through policy for all the writes. This
can be enabled by setting force write-through in the D-Cache bit in the CACR control register.

The data coherency between the core and the DMA is ensured by:
1. Either making the SRAM1 buffers not cacheable
2. Or making the SRAM1 buffers cache enabled with write-back policy, with the coherency ensured by software

(clean or invalidate D-Cache)
3. Or modifying the SRAM1 region in the MPU attribute to a shared region.
4. Or making the SRAM1 buffer cache enabled with write-through policy.

AN4839
Example for cache maintenance and data coherency

AN4839 - Rev 2 page 6/13Get more Datasheets at IQ.DIRECT

https://iq.direct/datasheets/

Another case is when the DMA is writing to the SRAM1 and the CPU is going to read data from the SRAM1. To
ensure the data coherency between the cache and the SRAM1, the software must perform a cache invalidate
before reading the updated data from the SRAM1.
For more details about the cache maintenance operations the user can refer to cache maintenance operations
section in STM32F7 Series and STM32H7 Series Cortex®-M7 processor programming manual (PM0253).

AN4839
Example for cache maintenance and data coherency

AN4839 - Rev 2 page 7/13Get more Datasheets at IQ.DIRECT

https://iq.direct/datasheets/

4 Mistakes to avoid and tips

• After reset, the user must invalidate each cache before enabling it, otherwise an UNPREDICTIBLE behavior
can occur.

• When disabling the data cache, the user must clean the entire cache to ensure that any dirty data is flushed
to the external memory.

• Before enabling the data cache, the user must invalidate the entire data cache if the external memory might
have changed since the cache was disabled.

• Before enabling the instruction cache, the user must invalidate the entire instruction cache if the external
memory might have changed since the cache was disabled.

• If the software is using cacheable memory regions for the DMA source/or destination buffers. The software
must trigger a cache clean before starting a DMA operation to ensure that all the data are committed to the
subsystem memory. After the DMA transfer complete, when reading the data from the peripheral, the
software must perform a cache invalidate before reading the DMA updated memory region.

• Always better to use non-cacheable regions for DMA buffers. The software can use the MPU to set up a
non-cacheable memory block to use as a shared memory between the CPU and DMA.

• Do not enable cache for the memory that is being used extensively for a DMA operation.
• When using the ART accelerator, the CPU can read an instruction in just 1 clock from the internal Flash

memory (like 0-wait state). So I-cache cannot be used for the internal Flash memory.
• When using NOR Flash, the write-back causes problems because the erase and write commands are not

sent to this external Flash memory.
• If the connected device is a normal memory, a D-cache read is useful. However, If the external device is an

ASIC and/or a FIFO, the user must disable the D-cache for reading.

AN4839
Mistakes to avoid and tips

AN4839 - Rev 2 page 8/13Get more Datasheets at IQ.DIRECT

https://iq.direct/datasheets/

Revision history

Table 3. Document revision history

Date Revision Changes

23-Mar-2016 1 Initial release.

06-Mar-2018 2 Added STM32H7 Series in the whole document.

Updated Figure 1. STM32F7 Series system architecture.

Updated Figure 2. Data transfer paths.

Added Section 1 General information.

AN4839

AN4839 - Rev 2 page 9/13Get more Datasheets at IQ.DIRECT

https://iq.direct/datasheets/

Contents

1 General information .2

2 Cache control .3

2.1 Accessing the Cortex®-M7 cache maintenance operations using CMSIS 4

3 Cache operation .5

3.1 STM32F7 and STM32H7 default settings . 5

3.2 Example for cache maintenance and data coherency. 5

4 Mistakes to avoid and tips .8

Revision history .9

Contents .10

List of tables .11

List of figures. .12

AN4839
Contents

AN4839 - Rev 2 page 10/13Get more Datasheets at IQ.DIRECT

https://iq.direct/datasheets/

List of tables
Table 1. CMSIS cache functions. 4
Table 2. Memory region shareability and cache policies . 5
Table 3. Document revision history . 9

AN4839
List of tables

AN4839 - Rev 2 page 11/13Get more Datasheets at IQ.DIRECT

https://iq.direct/datasheets/

List of figures
Figure 1. STM32F7 Series system architecture . 3
Figure 2. Data transfer paths . 6

AN4839
List of figures

AN4839 - Rev 2 page 12/13Get more Datasheets at IQ.DIRECT

https://iq.direct/datasheets/

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

AN4839

AN4839 - Rev 2 page 13/13Get more Datasheets at IQ.DIRECT

https://iq.direct/datasheets/

	1 General information
	2 Cache control
	2.1 Accessing the Cortex®-M7 cache maintenance operations using CMSIS

	3 Cache operation
	3.1 STM32F7 and STM32H7 default settings
	3.2 Example for cache maintenance and data coherency

	4 Mistakes to avoid and tips
	Revision history
	Contents
	List of tables
	List of figures

